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Abstract

A tracking control law using a sliding mode framework is de-
rived to control a satellite formation. Hill’s relative motion
cquations arc used to model the follower satellite’s motion rel-
ative to the leader. To minimize fuel required to maintain the
formation, cach satellite is constrained to reside near a natural
orbit. Control forces are applied only to maintain the desired
relative motion by correcting for initial offsets and perturba-
tion effects that tend to disperse the formation. The control
law is modified to account for the discontinuous nature of the
control forces available with the satellite propulsive thrusters.
Numerical simulations using a high-fidelity, nonlincar model
demonstrate the control law performance for the full nonlinear
dynamics with high order perturbations.

1 Introduction

Satellite formations are subject to different constraints than
ground or air vehicle formations. Due to fucl capacity limita-
tions, cach satellite in a formation must reside near a natural
orbit. Fuel is expended only to correct the initial deployment
inaccuracy and to overcome the perturbation effects that tend
to dislodge the satellite from the desired orbit. These pertur-
bations include the effects of earth oblateness, atmospheric
drag, and solar and lunar gravity. Among these perturba-
tions, the most significant is the sccond spherical harmonic in
the Earth’s gravity ficld due to oblateness, known as the Js
ceffect, which causes an uncontrolled formation to disperse [7].

This paper shows a tracking control design that forms the
desired satcllite formation after the initial deployment and
nudges the members back into formation when they drift from
the desired dynamics. Hill’s (or Clohessy-Wiltshire) cqua-
tions are used to model the follower satellite relative motion
with respect to the leader. In Hill’s equations and the com-
plete nonlinear dynamical equations, the control variables are
uniquely determined by a given output set. In mathematical
language, the input and output manifolds arc diffcomorphic.
Thus, the tracking control guarantees system stability.

2 Sliding Mode Control

This section considers the theoretical basis for incorporat-
ing a multiple satellite formation control problem into the slid-
ing mode framework. Consider a nonlincar dynamical system
of the form

‘T(U) = f((f,t)#*G([l?,f/)u(f/), (2_1)
= h

y() (w,1),

where x(t), u(t), and y(t) arc n, m, and m dimensional
real function vectors, f(x,t), G(x,t), and h(z,t) are analytic
vector or matrix functions of the variables z and t. For a
multi-input, multi-output system, the relative degree vector
a € IR™ provides insight to sliding plane sclection in a sliding
mode control design. Let

Yy (t) = hu(t).

The reference trajectory is represented by §(t), and the track-
ing error is defined as e(t) = g(t) — y(1).

a*(x,t) + B*(x, (2-2)

We shall design a controller with a sliding planc

a(e) eI (t) + Kay—1e@ (1) +

+Koes(t) + Ksess(t) =0,  (2-3)
where
K; = diag[kyjp(ay — j) -+ kmjp(am — )],
pi{o — j) = { (1) ﬁ o 2;7
apr = max{oy, a2, -, G},
K = diaglkis kas -+ kms),

es(t) = / e(t)dt, ess(t) = / es(t)dt,

and where ¢ =1,2,---,mand j=0,1,--- ap — 1.

Since the highest order derivative in (2-3) is lower than
the relative degree of the plant by exactly one, the right-
hand side of (2-3) does not involve the control vector u(t).
Tnstead, ¢(e) will contain w(t). This makes the sliding-mode
control solution casy to obtain when a quadratic function of
o(e) is used as the Lyapunov function. On the other hand, if
the sliding planc is of cqual or higher order than the relative
degree, the sliding mode control solution becomes unwieldy.
If the sliding plane is of lower order than the plant’s relative
degree by more than one, ¢(e) will not explicitly depend on
u(t), and no sliding mode exists on o(e) = 0. In this fashion,
the relative degree vector dictates the sliding plane selec tion
that is linear in the error signal.

We shall design an on-off sliding mode controller that keeps
the plant state (2-1) on the sliding plane (2-3). We select a

candidate Lyapunov function V = o7 (e)o(e)/2. The deriva-
tive of V' is

V =0o"(e)dle). (2-4)
Differentiating (2-3) with the aid of (2-2) yields
5e) = l(t) — B*(x, ult), (2:5)
where
at) = §) + Kap—1e*7 (1) +-
+Ko€( )+ Kses(t) — (w,t). (2-6)
Substituting (2-5) into (2-4) gives
Vo= aT(e)(at) - B*(x, thu(t)) (2-7)

g k)
— (OB (B () — ult)),
Sliding-mode control design finds u(t) such that o7 (e)d(e)
is always negative. There are many ways to achieve this goal.
One solution can take the following form

u(t) = Bz, t)alt) + ua(t), (2-8)
with
Ua(f) — { 8’5g;}(£)B*:T((JT7t)O—(e))> p > 07 (7(6) 7é 07 (2_9)



where p is defined as a diagonal matrix

s Pm) (2-10)

and the vector signum function is a column of signum func-
tions

pPi= dldg (p17/)27 T

sen o(e) = [sgnoy (e) sgnos(e) -« sgnon,(e)]” (2-11)
The control law (2-8) drives the system to the sliding plane.
The control vector that sets o(e) to zero is described as the
cquivalent control [3]. The sliding plane equivalent control
2-3) is the continuous component of (2-8) with u,(t) = 0.
Since this equivalent control forces the system to stay on a
linear sliding plane, the equivalent control is also labeled as
a feedback lincarizing control. If the sliding planc (2-3) is
chosen with dynamics that quickly reduce the error signal,
then the closed-loop system will have good performance.
The equivalent control, as shown in (2-8), is difficult to im-
plement for satellite control systems. Although the thruster
pulse widths are adjustable, the thrust magnitudes are not.
To implement a discontinuous sliding-mode control design
without the continuous component, let
u(t) = psgn (BT (2, 0)0(c), (212)
where p; > max|B " Mx,a(t)],i = 1,2,---,m and
B (z,t) is the ith row of B*~(x,t). The control law in
(2-12) gives an asymptotically stable closed-loop system, as
shown by substituting (2-12) into (2-7)
V = ¢
oT () B (, 1) (—p(t) sgm (BT (z, ) (e),

where

i~ {

fori = 1,2,---,m.

o+ BY N i) i (BEw0)0(€) <0, 1y 4
pi— B o )alt): it (BE(x1)a(e)) > 0.
Since p; is sufficiently large, p;(t) > 0.
Therefore, V' is always negative whenever o(e) # 0. Thus,
this control law drives the system to the sliding plane (2-3).
The control vector magnitude p (2-12) is typically sclected to
reflect the application, and is easily adjusted to accommodate
a changing control problem.

The coutrol law of (2-12) can also drive any finite initial
state to the sliding plane in finite time. To sce this, we rear-
range (2-13) to give

Vo= 0T (e)B )=l san (BT (r, 1o(e))),
< et (e)B*(x,1)| (2-15)
é _/)"V%v

where o/, p"” > 0. Since V' > 0, multiplying cquation (2-15)
by %V_% produces

1. .. 1
§V*%v < 5" <0. (2-16)

By integrating (2-16) from 0 to t, we find that
L L1 1 "
Vz(t) <Vz(0) — 5 t. (2-17)

The time required for the Lyapunov function to reach zero is
now defined as T. Then (2-17) implics

2V2(0)
pl/

T <

(2-18)

T * *—1 ~ _ . *T
() B (w, )(B™ (. )a(t) — p sgn (BT (. t)o(e))), of the closed-loop system. This computational burden arises

(2-13) from the tracking performance consideration, which requires

Thus, the Lyapunov function reaches zero in finite time. The
magnitude of discontinuous control is the design paramecter
that determines the reaching time.

The main drawback of the sliding-mode control method
is that when an unstable high frequency plant mode is ex-
cited, the discontinuous control may exhibit a chattering phe-
nomenon. Chattering describes rapid control signal switch-
ing between positive and negative values. The most common
way to avoid chattering is to introduce a boundary layer on
the sliding plane [3]. Other methods include synthesizing the
control variable derivatives so that the control variables them-
selves do not chatter [1]. In the boundary layer approach, the
discontinuous control law operates only when the system state
is outside the boundary layer. Within the boundary layer, we
implement a smooth transition from positive to negative, as
the system state crosses the sliding plane.

The satellite control problem does not permit control force
magnitude adjustments. Therefore, we cannot lmplement a
smooth transition technique. Instead, we implement a signum
function with a dead zone. Thus, (2-12) is modified as follows

pi it 6 < BT (x,t)o(e),

wi{t)y=1< 0 it =6 < BT (v, t)o(e) <6, (2-19)
—pi if  BT(x,t)o(e) < =6,
pi > max|| B Ha,Ha®)|, i=1,2,---,m,

for small positive values of §;, i =1,2,---,m.
The control laws (2-8), (2-12), and (2-19) all require a dou-
ble integral computation, ess(t), which is not a state variable

the sliding mode cquivalent control (2-6) to have one integra-
tion. In addition to the computational burden, the double
integral also introduces phase lag.

3 Satellite Control Design

In this scetion, we discuss the sliding plane design consider-
ations. In addition, we present a second order design example.

3.1 Control Problem Formulation

We shall consider formation control using a linear model
of the satellite relative dynamics to generate a reference tra-

jectory. In addition, the exact nonlincar model supplics the

simulation’s plant dynamics. As discussed carlicr, the lin-
carized cquations that describe the satellite relative motion
are known as Hill’s (or Clohessy-Wiltshire) equations [2]

& — 2wy — 3w = uy + dy,
§+ 2wt = uy +dy,

5+ 0w’z =u, +d.,

(3-1)

where z, y, and z arc the follower satellite’s positions relative
to a leader satellite in a circular orbit: x is in the radial diree-
tion from the carth, y is in leader satellite’s tangential velocity
direction, and z completes a right-hand coordinate system.
The leader satellite angular velocity, w, around the Earth,

(also known as the “mean motion”), is w = /&= where p is
the Earth’s gravitational constant and R is the radius of the
leader satellite’s circular orbit. The control variables (g, u,
and u,) and the disturbances (d,, d, and d,) arc net speeific
forces applied to the two-satellite system. The disturbances
in (3-1) include the net effects of unmodeled dynamics, net
gravitational perturbations, net atmospheric drag, net solar
radiation pressure, and net third body effects.



Our control problem is to design a control system for cach
follower satellite within the formation that drives the satel-
lites towards a desired trajectory relative to the formation
leader. In linear approximations that yield Hill’s equations,
all relative motion closed paths are ellipses. The desired tra-
jectory is a sustainable, natural, elliptic relative motion path
when both satellites are free of control forces and unwanted
perturbations [12]. A sustainable clliptic path maintains its
relative position with respect to the leader. In explicit form,
the family of sustainable elliptic paths is given by:

>

i(t) =
(t) =
1 =

where 7 determines the relative motion path size around the
leader, # characterizes the member satellite position on the
relative motion path, and m and n describe the plance slope
in which the relative motion path resides [12]. Reference tra-
jectories are chosen from this elliptic path family, which is a
subset of the force free Hills equation general solution. An
arbitrary initial condition may give rise to an unsustainable
path, which can not sustain a formation.

Due to fuel limitations, we cannot expect the controlled
satellite transient to settle in a short order time coustant.
The transient response should have a time constant commern-
surate with the leader satellite mean motion. Thercfore, we
shall scale the time axis so that within cach scaled time unit,
the leader satellite sweeps a 1 radian arc around the Earth,
regardless of the satellite altitude. We introduce a new time
variable, 7 = wt. When 7 = 1, the leader sweeps a 1 radian
arc around the Earth. Since

rsin{wt + 0),
2r cos{wt + 6),
mrsin{wt + 0) + 2nr cos(wt + 0),

e,

(3-2)

0>

dr dr A2z _ 2(]2.77

ar YA Az Y A

(3-3)

Hill’s equations (3-1) take the following form after the inde-
pendent variable ¢ is changed to 7:

T — 2y —3r = Uy +dg,

U+ 28 = uy +dy,

Z4+z=u,+d.,.

(3-4)

For convenience, we are renaming the control inputs, distur-
bances, and derivatives so that they are with respect to 7
instead of t. Note that in (3-1) and (3-4), the control forces
Ug, Uy and u,, and disturbances d,, dy, and d. arc net spe-
cific forces applied to the leader-member satellite system. The
word net refers to the difference between the specific forces
applied to the member satellite and those applied to the leader
satellite. Specific forces are applied to each unit mass of the
respective satellites. Specific forees are actually accelerations.
In close formations, the net disturbances arc greatly reduced
from the absolute amount that is exerted on the member
satellite. Changing the time variable to 7 for the reference
trajectory (3-2) yields

3>

rsin(7 + 6),
2r cos(T + 6),
mrsin(7 + 8) + 2nr cos(t + 0).

(1) =
(1)
(

T) =

>

(3-5)

=

2>

Equations (3-4) show that the in-plane Smy—plane) dynam-
ics given by the Hill’s equations are decoupled from the cross-
track (z -axis) dynamics. For the in-plane dynamics, we de-
sign a control policy so that the plant output tracks the ref-
erence trajectory

(1)
(7)

NatiR

(36)

rsin(r + 6)
2rcos(T +0) |’

for some given values of r, g, w, m and n. Likewise, we design
a cross-track control policy so that the plant output tracks the
reference trajectory
§2(T) = 2(7) = mrsin(T + 8) + 2nr cos(t + 6). (3-7)
Modern satellite systems use high power jets to produce
the desired control forces. The jets usually operate in a short
pulse sequence. Recall our assumption that pulse magnitudes
arc not variable, while pulse widths arc variable. Thercfore,
we shall use the discontinuous sliding-mode control without
continuous components. We shall incorporate a sliding planc
boundary layer that prevents chattering as described in equa-
tion (2-19). In this control law, we need to compute B*T (2, 1)

and o(e). We also need B*~!(z,t) and 4(t) to determine the
minimum control variable magnitude.

For the lincar systems model, we can separately design con-
trol laws for in-plane and cross-track dynamics. Since the dis-
turbances are in the form of matching uncertainties, we ignore
the disturbances in this design, and allow the inherent sliding
mode robustness to maintain system stability. First, we shall
determine the plant relative degree. Writing

7/1 (T) = ”/.i;g,(ma T) + B;y('ra T)(“’(T) —+ d(T)) (3_8)
where
% 3z + 2y .
(L;rq/(xaT) - [ T_Q'q} Y } s (5_9)
. 1 0
Bmy(x,T) = [ 0 1 } .

we see that the in-plane dynamic relative degree is (2,2). For
the cross-track dynamics, we have:

Z=al(z,7)+ Bl(z,7)(u, + d), (3-10)
where

ay(z,7) = , (3-11)

BI(z7)

|
=

Thercefore, the cross track dynamics relative degree is 2.

3.2 Effects of Disturbances and Perturba-
tions

Sliding mode control is inherently robust. The trajecto-
rics on the sliding surface exhibit invariance in the pres-
cnce of bounded unknown, matched uncertaintics and distur-
bances [11, 5]. Matched uncertainties or disturbances reside
in the range of control distribution matrix. In other words,
if matched uncertainties or disturbances are known, control
variables can counteract against them. In the satellite for-
mation control problem, microsatellites are modeled as point
masscs. The atmospheric drag, carth gravitational perturba-
tions, third body cffects, and unmodcled dynamics all result
in matched perturbations within the satellite model.

Sliding mode control is intrinsically robust against matched
uncertainties. The control is always driving the system to-
wards the sliding plane.  If the disturbance d is acting in
the same direction as the control w, then d reinforees v and
drives the system faster towards the sliding plane. Since con-
trol magnitude does not vary, control is required for a shorter
duration in this direction. The performance is actually im-
proved. Now suppose the disturbance acts in the opposite
direction as the control. The system is driven towards the
sliding planc more slowly. Control is required for a longer
duration to cnable the system to reach the sliding plane. In
this fashion, the control automatically adjusts its pulse-width.
When the system is on the sliding plane, the error dynamics
are determined by the sliding plane parameters.




The most significant orbital perturbation is the Jy effect.
The Jy cffect accounts for Earth oblateness and the Jsz cof-
feet accounts for the carth’s polar bulge. The Hill’s equations
%3—1) and (3-4) do not account for the non-spherical earth ef-
ects, nor the nonlinear dynamics. The .J5 effect is nearly two
orders of magnitude more pronounced than Js. These grav-
ity perturbations will move an uncontrolled satellite from its
nominal orbit. The disturbances in our model arc net spe-
cific disturbances. In close formations, the net disturbances
arc significantly reduced from total disturbances, but are still
consequential. Sabol et al. [7] simulated a two-satellite for-
mation where the .J5 effect gradually disperses the formation.
Solar radiation pressure and tesseral resonance are periodic
and will gradually wear out the formation, causing its mem-
bers to disperse relative to cach other. In trac king control,
the cffects of solar radiation pressure and tesscral resonance
are also countered by control thrusts.

3.3 Second Order Sliding Plane Design

We choose a sliding plane in the form of (2-3). The error
function rapidly approaches zero when the system state is on
that plane. The sliding plane produces a proportional-plus-
integral-plus-derivative equivalent control on the feedback-
lincarized plant. Applying the satellite system relative de-
grees to (2-3) yiclds the sliding plancs for both the in-planc
dynamics and the cross-track dynamics in the form

0() = ~o(r) + Kaelr) + Koes(7). (3-12)
We will select the two complex poles as
p1=0.05(=1+jV3), (3-13)
and
(s —p1)(s — p2) = s> + 0.1s + 0.01. (3-14)

Comparison of (3-12) with (3-14) gives

Ky =0.11, Ko =0.011.

The discontinuous sliding-mode control laws with a sccond-
order sliding-plane are obtained by substituting (3-12) and
(3-15) into (2-19)

pi i 6 < é;(T) +0.1e;(T) + 0.01eg (1),
ui(T) = 0 if —& <é(r)+0. 1e( )+ 0.01eq(7) <
—pi if &;(7) 4+ 0.1e;(7) + 0.01les (1) < —b;,

pi > max|u(t)]|, =9,z

where the control signmal magnitude has a lower bound that
is determined by simulation. In the simulation runs discussed
in Scction 4, we will readjust K7 and K» to scarch for sliding
plane that require minimal fuel consumption.

4 Numerical Simulation

This section summarizes the numerical simulation of a mi-
crosatellite formation using a sliding mode framework for con-
trol. A leader satellite orbits in a low-Earth, polar orbit while
a follower satellite is actively controlled. The design parame-
ters for fuel minimization arc investigated.

As described in previous sections, tracking control requires
a desired dynamics model of the satellite relative motion. The
sliding mode controller works to minimize the differences be-
tween the desired and actual relative motion for each of the

Cartesian coordinate directions. For this current rescarch ef-
fort, we use lincar Hills equations (3-1) to provide the desired
relative motion. An independent sliding mode algorithm is
created for each direction. Control thrusts are therefore de-
termined and applied independently for each direction.

To account for the discrete nature of the control thrusts, we
add a nonlincar block that regulates the control thrust input.
In cach moving coordinate frame direction, the o function
from cquation (3-12) monitors the crror between desired and
actual relative position, relative velocity, and integral of error
position. The simulation assumes instantaneous sensing of
these variables. If |o| is less than some defined threshold, 4;,
where 4 = x,y, z, control inputs arc zcro. If |o| exceeds 6;,
a constant control force is applied. These thrust levels arce
adjustable to better simulate the actual thrust magnitude for
a given application.

Our simulation incorporates a high fidelity orbital propoga-
tion algorithm written by Princeton Satellite Systems for
Matlab. This algorithm propagates cach satellite indepen-
dently in the Earth Centered Inertial (ECIT) reference frame.
It permits user defined levels of disturbances, such as drag,
solar impacts, third body impacts from the moon’s gravity,
and non-spherical earth impacts. In addition, the high fi-
delity code accepts external force inputs, providing a conve-
nient means to simulate control forces.

We consider the case where satellites orbit the Earth in
near polar orbits. The leader satellite is in a circular orbit,
while the follower’s orbit has some cccentricity to produce the
desired relative motion. The leader satellite’s starting posi-
tion has an 800 km altitude, with mean anomaly, longitude of
ascending node, and argument of perigee equaling zero. The
relative orbit between satellites is circular. The leader exists
in the formation center, while the follower satellite attempts
to maintain a 1 km radius. Thrust for formationkeeping is
only applicd to the follower satellite; the leader satellite or-
bits the Earth open loop. The simulation includes the Earth
oblateness effect.
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Figure 1: AV vs. Damping Ratio

The sliding mode design incorporates a number of design
tradeoffs. In this section, all thrust levels and fuel consump-
tions (AV) are expressed in normalized "net specific values”
as defined in (3-4). Note that AV is the integral of the specific
control forces. The poles associated with the sliding surface
arc a primary variable when considering the closed loop de-
sign. The sliding surface gives the characteristic equation of
the closed loop response when the equivalent control of the
sliding mode is implemented (i.e. when the controlled system
is on the sliding planc). We investigated several sliding planc
pole locations to analyze their impact on fuel consumption,
as measured by the amount of velocity required for station-
keeping (AV); see Figure 1. To formulate a reasonable com-



parison, we maintained the normalized natural frequency of
the characteristic equation at (0.1. This normalized natural
frequency unit results by changing the time variable from ¢
to 7 in (3-1). To minimize the AV requirement, the most
effective cases correspond to a damping ratio between 0.866
and 0.966. These damping ratios minimize the overshoot of
the thrust response. We found that the cases with smaller
damping ratio less than 0.5 require additional control energy
to maintain an acceptable sliding surface boundary layer (6;).
In addition, larger damping ratios (0.966 or higher) at this
natural frequency drive the follower satellite towards the de-
sired orbit too aggressively. This overcorrection costs more
cnergy as well.
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Figure 3: Response vs. Sliding Pole Bandwidth

The AV consumption is highly dependent on the band-
width of the sliding plane poles. Consider the case where the
characteristic pole is located along the ¢ = 0.5 line. For a
given sliding plane boundary layer (6;) and corrective thrust
(p) magnitude, some ideal bandwidth is determined. In this
case, it occurs around the 1 radian bandwidth. If bandwidth
is too high, the control energy tends to knock the satellite
back and forth too frequently. In these cases, the disturbance
forces actually cause minimal impact on the error in the satel-
lite’s relative position. Sce Figure 3. For this high bandwidth
case (with poles represented as a A in Figure 2), the com-
pensator poles are designed to cause the satellite to reach its
correct position in a half revolution around the Earth (half of

the 100.71 minutes for this low Earth orbit). Conversely, if
the bandwidth is too low, the satellites require a long settling
time. As shown in Figure 3, the satellite is “lightly” tapped
to correct the orbit. The low bandwidth response can require
an excessive amount of control energy over the long run. This
case corresponds to the pole represented by () in Figure 2.

Another major variable that impacts the desirability of the
sliding mode pole location is the thrust magnitude. Recall
that the high fidelity simulation allows dircet acceleration
thrust inscrtions into the model. Figure 4 indicates the impact
of thrust level for a typical medium bandwidth and moderate
damping ratio (where ¢ = 0.5). Oune can achieve improved
performance by increasing the corrective thrust level for a
given threshold level to a point. Increasing the thrust levels
beyond this point overcompensates, resulting in wasted en-
crgy from the tighter position error. The solid line on Figure
5 shows the tighter trajectory tracking. Thrust magnitude
decreases also require excessive AV requirements and create
looser positional error. This position error is shown by the
dash-dot line in Figure 5.
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Figure 5: Response vs. Thrust Level

One can draw similar conclusions about the threshold val-
ues that trigger the corrective thrusts. Varying é; produces a
parabolic AV curve (Figure 6). Given some sclection for con-
trol paramecters such as damping ratio and natural frequency,
we can formulate some rule of thumb that relates the trig-
gering threshold for the prescribed thrust magnitude. Exces-
sive drift usually requires too much corrective thrust to make



loose tolerances feasible. On the other hand, excessively tight
tolerances cause overcompensation, as the satellite bounces
between threshold extremes.
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The sliding mode design is robust to various perturbations.
The methodology only requires a tracking signal that indi-
cates what the desired relative position and velocity vectors
are. Recall that we track a trajectory derived from the linear
Hills equation as our desired dynamics. We compare two or-
biting dynamic models: the high fidelity simulation with J;
only and the all perturbative force options available in the
high fidelity simulation including higher order Earth gravita-
tional cffects, atmospheric drag, solar radiation, solar distur-
bances, and lunar and solar gravity.

We found that as the bandwidth of the closed loop sys-
tem increases, the differences in perturbative forces becomes
negligible in terms of fuel usage compared to the Jy case dis-
cussed earlier. This is because more power is used to drive
the system towards the sliding mode and disturbance affects
are attenuated more effectively. The disturbance effects are
more noticeable at lower bandwidth designs. There are neg-
ligible closed loop response differences between the Jo only
disturbance case and numerous perturbation case. In fact,
for a simulation with a one week duration, the Jo-only case
requries approximately the same AV as the extensive pertur-
bation case, to within 1%. Figure 7 shows the similar position
error for these cases. This supports the conclusion that Js is
the dominant perturbation at this orbit trajectory.
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