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Abstract

The performance of linear control laws for satellite formation-
keeping in the presence of gravity perturbations is considered.
Control using a linear quadratic regulator to minimize the er-
ror between the actual and desired relative satellite motion
is assessed for its ability to maintain a particular formation
geometry in the presence of the earth oblateness gravity per-
turbation. The desired formation geometry is based on the
solution to the linear, unperturbed relative motion equations.
Specifically, a formation of satellites is chosen whose projected
motion onto the earth’s tangential plane is a one kilometer
circle. It is shown that the linear control laws maintain the
formation within error bounds in the presence of gravity per-
turbations. Furthermore, simulations provide estimates of the
maneuvering propellant required to maintain such a forma-
tion, providing a baseline for future studies involving forma-
tions based on less taxing desired trajectories and more care-
fully chosen control strategies.

1 Introduction

Flying a close formation of several satellites for distributed
space operations has recently become a topic of significant
interest. The idea of using several small, unconnected, co-
orbiting satellites to form a sparse aperture rather than using
a single monolithic satellite having a single filled aperture has
many advantages as well as many technical challenges. The
resolution of an imaging sensor is limited by the maximum
achievable baseline or aperture size, so that a single filled
aperture sensor is limited by physical size and weight consid-
erations. Meanwhile, larger baselines can be achieved using a
satellite formation to form a large sparse aperture simply by
increasing the formation size. Hence, the formation is capable
of much finer resolution than would be possible otherwise. In
addition, smaller satellites are much easier to put into orbit,
and so save on launch costs. Finally, since the distributed
satellites can be reconfigured into formations of different ge-
ometries, a single formation of satellites can be made to per-
form a variety of different missions.

The first part of the formationkeeping problem is to find
a formation geometry that meets the requirements of the de-
sired mission and requires a reasonable amount of maneuver-
ing propellent to overcome disturbances and perturbations in
maintaining the formation geometry. Formations based on
the Clohessy-Wiltshire, or Hill’s, equations [3], which yield
closed periodic solutions for the linear, unperturbed relative
motion, provide a starting point. Such formations would
maintain their geometry indefinitely in the absence of pertur-
bations and disturbances. These formations have been con-
sidered by [8].

The high order orbital dynamics include significant pertur-
bations, the most important difference being the earth grav-
ity harmonics. The first harmonic, the J; or earth oblateness
term, causes the largest perturbation in the motion, and is
therefore the most important term to consider. Orbits that
are closed in the presence of the Jo perturbation have also

been considered in [9], although these may not be feasible for
all missions. In general, closed orbits may not be available
for a specific mission, and in any case will not consider all
the gravitational perturbations, so that feedback control will
always be required.

After a suitable formation has been designed, the optimal
control law that uses an optimal amount of propellant for that
formation must be found. Linear quadratic control laws have
been considered by several researchers [1, 4, 7, 12, 14]. In
these cases, the unperturbed dynamics were discretized and
discrete-time linear quadratic regulators were found to sta-
bilize the relative motion dynamics and provide formation-
keeping for simple formations. Other control laws have been
considered in [5, 6, 10, 11, 13].

The goal of this paper is to apply a control strategy based
on the linear relative motion or Hill’s equations to a particular
satellite formation and evaluate the performance in the pres-
ence of gravity perturbations. The formation considered will
consist of a ring of satellites whose projection onto the tan-
gential plane is a one kilometer circle. Finally, the amount of
maneuvering propellant required will be assessed to provide a
baseline for future studies, where both better desired trajecto-
ries and more advanced control strategies will be considered.

2 Relative Motion Dynamics

The dynamics of a satellite formation can be described in
terms of the relative positions and velocities of the constituent
satellites. The description of motion is most convenient when
it is referred to a moving frame attached to one of the satel-
lites in the formation. The equations of relative motion be-
tween two orbiting satellites were derived initially to solve the
problem of orbital rendezvous, in which a satellite was to be
assembled in orbit and the components were required to ren-
dezvous in sequence for assembly [3]. These same equations
are also quite useful in the design of satellite formation geome-
tries and control laws to maintain these formations. In this
section we will review the relative motion dynamics of two
satellites orbiting close together and give a brief description
of their derivation.

Consider two satellites in orbit around a spherical earth.
Let the first satellite have position 7 relative to the center of
the earth and let the second have position p relative to the
first so that its position relative to the earth’s center is 7 + p.
The motions of the satellites are given by

r+ %f = Fj,
T
Pt s (7 4 ) = F,
7+ pP
where p is the earth’s gravitational constant, r = ||, and

F; and Fy are the external disturbances and perturbations
on the leader and follower satellites, respectively. Taking the
difference of these equations yields
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Now, assume that the leader satellite is in a circular orbit so
that r is constant and that there are no external disturbances
or perturbations acting on the satellites. Consider a moving
coordinate system attached to the leader satellite where 7 is
in the radial direction, j is in the direction of the motion, and

k is normal to the orbital plane. Letting the relative position

vector be written as p = xi+yj+ 2k and resolving the vector
relative motion equation above into components yields
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Assuming that the distance between the satellites is small and
noting that w? = 4r, the equations can be linearized to yield

& — 2wy — 3wz = 0, (1)
j+2wi = 0, (2)
4w’z = 0. (3)

These are the Clohessy-Wiltshire or Hill’s equations of relative
orbital motion [3].
The closed-form solution to Hill’s equations (1)-(3) is given
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z(t) = @ sinwt + z(0) cos wt.
Noting that the third term of y(t) grows unbounded as time
increases, the constraint 2wz(0) 4+ ¢(0) = 0 enforces that the
follower does not drift away from the leader, effectively set-
ting the total energies of the two orbits equal. The resulting
motion in the moving coordinate frame attached to the leader
is an ellipse whose projection in the orbit plane is an ellipse
having a semi-major axis twice its semi-minor axis. Further-
more, setting
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puts the center of the ellipse at the leader, so that
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It has been shown in [15] that the motion in general can be
described as the intersection of a plane and an elliptic cylin-
der.

The relative motion equations (1)-(3) are for the unper-
turbed two-body motion. Here, we consider the performance
of control strategies in the presence of the first earth gravity
harmonic, the J, perturbation, as well as higher order gravity
perturbations. The primary effects of Jy are to rotate both
the orbit plane and the orbit within the moving plane. The
relative motion of closely orbiting satellites will vary from the
Hill’s equations solutions due to the differential perturbations
on each of the satellites, and will tend to disperse the forma-
tion over time.

3 Formation Design

The relative motion equations derived in the previous section
can be used to design formations for distributed satellites. In
[8], the solutions to these equations were used to define four
formations: in-track, in-plane, circular, and projected circu-
lar. In the first two, a leader satellite orbits ahead of a fol-
lower satellite. The in-track formation has a follower satellite
in the same orbit while the in-plane formation has a follower
in a slightly different orbit to to account for the rotation of the
earth and give the two the same ground track. In the second
two, a leader satellite is surrounded by an arbitrary number
of follower satellites having the same orbital period. Small
differences in inclination and ascending node crossings cause
the follower satellites to appear to rotate in suborbits around
the leader satellite in the moving coordinate frame attached
to the leader. The circular formation has all of the follower
satellites arranged in a circle while the projected circular for-
mation has all of the followers in an ellipse whose projection
onto the tangential plane is a circle. Both of these are special
cases of the general elliptical shape of this type of formation.

We consider a projected circular formation of satellites.
The leader satellite is assumed to be in a polar, circular orbit
at 800km altitude. The projection of the formation’s motion
onto the earth’s tangential plane is a one kilometer circle.
A plot of the desired trajectory is shown in Figure 1 with
projections onto each of the three planes. The initial orbital
elements are given in Table 1 for the reference satellite and
four satellites equally distributed around the ellipse. The an-
gle 6 is used to represent the initial phasing. Note that two
of the satellites differ from the reference by their inclination
i while the other two differ by their ascending node crossing
Q.
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Figure 1: Trajectory of Projected Circular Formation



Leader Followers

0 =0° 8 =90° 0 = 180° 0 = 270°

a(km) 7178 7178 7178 7178 7178
e 0 3.48 x1075 3.48 x107® 348 x107° 3.48 x10~°

i(deg) 90 90 90.004 90 89.996
Q(deg) 0 -0.004 0 0.004 0
w(deg) 0 180 270.016 0 89.984
M (deg) 0 180 89.984 0 270.016

Table 1: Orbital Elements of Formation

The projected circular formation is designed based on the
linear solutions to the relative motion equations (7)-(9), and
hence is an approximation to the true orbital dynamics. In
particular, the nonlinearities and the orbital perturbations
will lead to different relative motion dynamics than described
by the linear equations. To see this, we can initialize the for-
mation and perform nonlinear simulations with and without
the Jy gravity perturbation.

First, consider the unperturbed relative motion of the satel-
lite with initial phasing § = 0 with no external disturbances
or perturbations. The projected motion over one day is shown
in Figure 2. The projected motion is as expected, since the
nonlinearities for a one kilometer formation are very small.
The errors in position come from the nonlinearity of the or-
bital dynamics, are small, and on average do not grow with
time.
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Figure 2: Projection of Unperturbed Motion

Next, consider the relative motion of the same satellite in
the presence of the first gravity harmonic or J, perturbation.
The projected motion over one day is shown in Figure 3. Even
over a period of just one day the projected motion drifts no-
ticeably and the errors in the relative motion are significant.
Finally, the simulation was performed using a geopotential
model to degree and order 21. The result was not percepti-
ble different from the case of .J5 alone, confirming that it is
the most significant perturbation. Note that the initial phase
of the satellite in the ring around the leader will affect the
motion. Specifically, the satellites whose ascending nodes are
different from the leader behave differently from those whose
inclinations are different. The result for either case is for the
formation to disperse, and a control strategy will be required
to maintain the relative geometry of the formation.

4 Formationkeeping Control

The projected circular formation defined in the previous sec-
tion was derived using the linear relative motion equations for
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Figure 3: Projection of Motion with J,

the two-body problem. Hence, for simple two-body orbital
dynamics, the formation will be maintained indefinitely once
the correct initial conditions are met. Unfortunately, grav-
ity perturbations from earth asphericity, atmospheric drag,
and solar radiation pressure all tend to perturb the orbits
from their simple elliptical shapes predicted from two-body
dynamics. Hence, control forces will have to be applied to
maintain the relative distances of the formation.

Traditional satellite operations consist of long periods of un-
controlled behavior interrupted by small corrections to orbits.
This can be effective since coarse satellite positioning require-
ments can be achieved through open loop behavior with small
occasional corrections. However, formation flying will require
much more demanding positioning requirements, and hence
will require much more stringent control.

Unlike in most control problems, the application of forces
to satellites to change their orbits can only be made over
very short periods of time; the remainder of the time the
satellite motion evolves naturally. This is because maneuver-
ing propellant is scarce and cannot be replenished, chemical
thrusters currently available as well more advanced propul-
sion systems such as pulse plasma thrusters are designed to
work for limited periods, and thrusting tends to disrupt satel-
lite operations. For these reasons, satellite control inputs can
be modeled as impulsive changes to the satellites’ velocities.

In this section, we apply state feedback, linear quadratic
control to the formationkeeping problem described in the pre-
vious sections. Since the in-plane and out-of-plane motions
are linearly decoupled, the feedback gains can be designed
separately. The dynamic model of the relative motion (1)-(3)
is written as a set of first order equations and discretized.
In this case, to improve the accuracy of the model, the fre-
quency of the satellite motion w is corrected to account for
the Jy perturbation. The control inputs are chosen to be the
impulsive velocity increments (A%, Ay, AZ) and the sampling
time is chosen to be one hour. Hence, an impulsive velocity
correction is computed and applied each hour. Using stan-



dard discrete-time LQ regulator theory, feedback gains are
found to minimize the quadratic costs

> AV2(k AV (k)
Tey = Y 2°(k)+y°(k)+p wQ( )+p 52 ,
k=0
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where p is a parameter used to trade off the propellant us-
age and tracking accuracy of the control law. The resulting
control laws are given by
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where (24, Ya, z4) and (24, Yd, 24) are the desired positions and
velocities based on the linear, unperturbed relative motion
dynamics.
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Figure 4: Projection of Motion with LQR and Js
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Figure 5: Tracking Error with LQR and J;

The closed loop behavior is simulated using the LQ feed-
back gains and the orbital dynamics including the J, pertur-
bation. The desired trajectory for the tracking problem is the
solution (7)-(9), with wt replaced by the argument of latitude
of the leader satellite so that small errors in the orbital fre-
quency do not create errors in the desired position that build

up over time. The projected motion, tracking error, and im-
pulsive control inputs are shown for the case of p = 100 for
the satellite with initial phase angle of 90 degrees in Figures
4-6. The tracking error is limited to about 50 meters.
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Figure 6: AV with LQR and J

To see the tradeoff between tracking error and fuel usage,
the parameter p in the cost function is varied and the closed
loop satellite behavior is again simulated including the J; per-
turbation, now for the satellite having different initial phase
angles 6. Because of symmetry, the satellites having maxi-
mum node differences had similar performance, as did those
having maximum inclination differences. In each case, the
maximum errors and the AV per day required to maintain
the formation were estimated using the simulation. The re-
sults are shown in Figures 7 and 8 and tabulated in Tables 2
and 3. Intuitively, as p increases the tracking error decreases
while the amount of maneuvering propellant is reduced. In
addition, the amount of propellant used to maintain the tra-
jectories of the satellites with inclination differences ih higher
than that required for the satellites with ascending node dif-
ferences.
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Figure 7: Maximum Tracking Error for Different p and 6

=01 1 T0 1000
0=0] 1593 1742 196 2154
90 | 18.36 18.79 245 50.70
180 | 16.25 17.70 20.0 22.26
270 | 1752 17.94 252 50.35

Table 1:

Maximum Tracking Error for Different p and 6
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Figure 8: AV per day for Different p and 0

=01 1 101000
=01 0060 0.040 0033 0022
90 | 0.135 0.125 0.106 0.078
180 | 0.071  0.050 0.033 0.022
270 | 0.136 0.125 0.106 0.078

Table 2: AV per day for Different p and 6

Finally, the initial conditions of two satellites are displaced
from their desired positions by placing them in the same cir-
cular orbit at the leader, but with a phase difference to put
one approximately two and a half kilometers ahead of the
leader and one the same distance behind. The control law is
turned applied and both move toward their desired trajecto-
ries in the formation. A three dimensional plot of the motion
is shown in Figure 9.
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Figure 9: Offset Initial Condition Motion

5 Conclusions

In this paper, a feedback control strategy for formationkeep-
ing of a projected circular formation of satellites was evaluated
based on its ability to maintain a desired formation in the
presence of earth gravity perturbations. A simple discrete-
time linear quadratic regulator provided bounded error for
the satellite formation. Simulations provided a baseline on
the amount of formationkeeping propellant that would be re-
quired to maintain the formation.
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